Online Learning with Multiple Operator-valued Kernels
نویسندگان
چکیده
We consider the problem of learning a vector-valued function f in an online learning setting. The function f is assumed to lie in a reproducing Hilbert space of operator-valued kernels. We describe two online algorithms for learning f while taking into account the output structure. A first contribution is an algorithm, ONORMA, that extends the standard kernel-based online learning algorithm NORMA from scalar-valued to operator-valued setting. We report a cumulative error bound that holds both for classification and regression. We then define a second algorithm, MONORMA, which addresses the limitation of pre-defining the output structure in ONORMA by learning sequentially a linear combination of operator-valued kernels. Our experiments show that the proposed algorithms achieve good performance results with low computational cost.
منابع مشابه
Multiple Operator-valued Kernel Learning
Positive definite operator-valued kernels generalize the well-known notion of reproducing kernels, and are naturally adapted to multi-output learning situations. This paper addresses the problem of learning a finite linear combination of infinite-dimensional operator-valued kernels which are suitable for extending functional data analysis methods to nonlinear contexts. We study this problem in ...
متن کاملRefinement of Operator-valued Reproducing Kernels
This paper studies the construction of a refinement kernel for a given operator-valued reproducing kernel such that the vector-valued reproducing kernel Hilbert space of the refinement kernel contains that of the given kernel as a subspace. The study is motivated from the need of updating the current operator-valued reproducing kernel in multi-task learning when underfitting or overfitting occu...
متن کاملOperator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning
This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...
متن کاملFunctional Regularized Least Squares Classication with Operator-valued Kernels
Although operator-valued kernels have recently received increasing interest in various machine learning and functional data analysis problems such as multi-task learning or functional regression, little attention has been paid to the understanding of their associated feature spaces. In this paper, we explore the potential of adopting an operatorvalued kernel feature space perspective for the an...
متن کاملFunctional Regularized Least Squares Classification with Operator-valued Kernels
Although operator-valued kernels have recently received increasing interest in various machine learning and functional data analysis problems such as multi-task learning or functional regression, little attention has been paid to the understanding of their associated feature spaces. In this paper, we explore the potential of adopting an operatorvalued kernel feature space perspective for the an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1311.0222 شماره
صفحات -
تاریخ انتشار 2013